Interface Bond Values for Micropile Design

Mike Turner
Applied Geotechnical Engineering

Background:

- Micropiles up to 2500kN (250 metric tonnes; 280 US tons) compression
- 500kN tension
- Base of 500-750mm (20 to 30 inch) tubular piles
- Replace large diameter rock sockets

Design of interfaces:

- (1) Compression:
- End-bearing on micropile head
- Grout-to-reinforcement bond

Grout-to-rock bond

Design of interfaces:

- (2) Tension
- Grout-to-rock bond
- Grout to reinforcement bond
- Grout-to-tubular steel pile bond

Grout-to-rock bond:

Sources of test information:

- Ground anchors
- Soil nails
- Rock bolts
- Rock dowels
- Conventional bored piles

Common reference sources:

- BS8081:1989 /
- Littlejohn & Bruce 1977
- Barley 1988
- Littlejohn 1980
- Cole & Stroud 1977
 - + Stroud 1988

Other test data:

- From Turner et al since 1980
- Attached as Tables 1 and 2
- Table 1: covers rock anchor tests up to 1980
- Table 2: covers ground anchor and micropile tests up to present-day

Identifiers:

- Rock type (mainly)
- Geological formation, age etc
- Weathering grades
- Young's Modulus
- UCS
- TCR
- RQD

Test values recorded:

- Max bond stress (no failure)
- Ult bond stress, where achieved
- Max applied test force
- Design bond stress adopted
- (+ drill-hole diameter)

Rough conclusions:

- RQD <25% affects bond</p>
- Chalk bond correlates with SPT
- Weak mudrocks correlate with SPT
- UCS/10 correlates 'roughly'

Further rouch conclusions:

- Micropiles in near surface rocks: reduce bond value by half
- Expect incresing hole diameter= decreasing bond value.
- Degree of weathering should affect bond